# must take others opinions into account
table(df.asp.bl$scs3_new)
##
## 1 2 3 4
## 58 389 2728 1416
df.asp.bl$scs3_newbin <- if_else(df.asp.bl$scs3_new >2, 1,0)
mean(df.asp.bl$scs3_newbin, na.rm=T) # 90%
## [1] 0.9026356
# must sacrifice self for others
table(df.asp.bl$tg1_new)
##
## 1 2 3 4
## 162 796 2567 1058
df.asp.bl$tg1_new_bin <- if_else(df.asp.bl$tg1_new >2, 1,0)
mean(df.asp.bl$tg1_new_bin, na.rm=T) # 79%
## [1] 0.7909666
# distance to nearest market
mean(df.asp.bl1$hou_mar_min, na.rm=T) # 73 min
## [1] 72.63368
# develop together
Hmisc::describe(de.ctl$aut_dev_r)
## de.ctl$aut_dev_r
## n missing distinct Info Sum Mean
## 1215 1 2 0.372 1039 0.8551
mean(de.ctl$aut_dev_r, na.rm=T) # 86%
## [1] 0.855144
vec <- c(176, 1039)
chisq.test(vec, p = c(1/2, 1/2)) # X-squared = 612.98, df = 1, p-value < 2.2e-16
##
## Chi-squared test for given probabilities
##
## data: vec
## X-squared = 612.98, df = 1, p-value < 2.2e-16
# Success
### Niger
Hmisc::describe(de.ctl$TopSuccess)
## de.ctl$TopSuccess
## n missing distinct
## 1216 0 4
##
## Value Good Relationships Hard work Peace
## Frequency 268 280 517
## Proportion 0.220 0.230 0.425
##
## Value Self-Initiative
## Frequency 151
## Proportion 0.124
# Value Good Relationships Hard work Peace Self-Initiative
# Frequency 268 280 517 151
# Proportion 0.220 0.230 0.425 0.124
vec <- c(268, 280, 517, 151)
chisq.test(vec, p = c(1/4, 1/4, 1/4, 1/4)) # X-squared = 232.4, df = 3, p<.001
##
## Chi-squared test for given probabilities
##
## data: vec
## X-squared = 232.4, df = 3, p-value < 2.2e-16
table(de.ctl$TopSuccess_Inter)
##
## 0 1
## 431 785
vec <- c(431, 785)
chisq.test(vec, p = c(1/2, 1/2)) # X-squared = 103.06, df = 1, p-value < 2.2e-16
##
## Chi-squared test for given probabilities
##
## data: vec
## X-squared = 103.06, df = 1, p-value < 2.2e-16
### USA
table(de.usa$important_quality_1)
##
## Connections Hardwork Initiative Peaceful
## 26 81 112 83
# Connections Hardwork Initiative Peaceful
# 26 81 112 83
table(de.usa$TopSuccess_Inter)
##
## 0 1
## 193 109
length(de.usa$TopSuccess_Inter)
## [1] 302
vec <- c(193, 109)
chisq.test(vec, p = c(1/2, 1/2)) # X-squared = 112.65, df = 3, p-value < .001
##
## Chi-squared test for given probabilities
##
## data: vec
## X-squared = 23.364, df = 1, p-value = 1.34e-06
## de.ctl$TopFail
## n missing distinct
## 1216 0 4
##
## Value Not being persistent Not planning for the future
## Frequency 221 162
## Proportion 0.182 0.133
##
## Value Not respecting others Tension in hh
## Frequency 505 328
## Proportion 0.415 0.270
##
## Not being persistent Not planning for the future
## 221 162
## Not respecting others Tension in hh
## 505 328
##
## Chi-squared test for given probabilities
##
## data: vec
## X-squared = 223.78, df = 3, p-value < 2.2e-16
## de.ctl$TopFail_Inter
## n missing distinct
## 1216 0 2
##
## Value 0 1
## Frequency 383 833
## Proportion 0.315 0.685
##
## Chi-squared test for given probabilities
##
## data: vec
## X-squared = 166.53, df = 1, p-value < 2.2e-16
##
## 0 1
## 176 126
## [1] 302
##
## Chi-squared test for given probabilities
##
## data: vec
## X-squared = 33.213, df = 1, p-value = 8.258e-09
## de.ctl$TopSuccess
## n missing distinct
## 1216 0 4
##
## Value Good Relationships Hard work Peace
## Frequency 268 280 517
## Proportion 0.220 0.230 0.425
##
## Value Self-Initiative
## Frequency 151
## Proportion 0.124
## de.usa$important_quality_1
## n missing distinct
## 302 0 4
##
## Value Connections Hardwork Initiative Peaceful
## Frequency 26 81 112 83
## Proportion 0.086 0.268 0.371 0.275
## [1] "Social \nconnections \n " "Hard work"
## [3] "Peacefulness" "Self-\ninitiative"
## de.ctl$TopFail
## n missing distinct
## 1216 0 4
##
## Value Not being persistent Not planning for the future
## Frequency 221 162
## Proportion 0.182 0.133
##
## Value Not respecting others Tension in hh
## Frequency 505 328
## Proportion 0.415 0.270
## de.usa$important_failure_1
## n missing distinct
## 302 0 4
##
## Value NoPersevere NoPlan NoRespect Tension
## Frequency 30 146 39 87
## Proportion 0.099 0.483 0.129 0.288
## # A tibble: 1,152 × 13
## `Collective Action` `Social Standing` `Self-Efficacy` `Future Expectations`
## <dbl> <dbl> <dbl> <dbl>
## 1 -0.654 -0.523 -0.516 -0.0498
## 2 0.888 0.932 0.260 0.722
## 3 -0.137 -0.523 0.778 0.531
## 4 0.917 -1.17 -0.257 -1.66
## 5 -0.654 1.58 1.81 0.722
## 6 0.286 0.932 0.778 0.0892
## 7 -1.69 0.285 0.00157 -0.490
## 8 -0.654 0.770 1.04 1.24
## 9 -0.654 -1.98 0.260 -1.48
## 10 -1.17 0.608 1.81 0.504
## # ℹ 1,142 more rows
## # ℹ 9 more variables: `Controls Earnings` <dbl>, `Mental Health` <dbl>,
## # `Social Support` <dbl>, `Social Norms` <dbl>,
## # `Intra-Household Dynamics` <dbl>, `Financial Support` <dbl>,
## # `Social Cohesion` <dbl>, `IPV Perceptions` <dbl>, `Control in HH` <dbl>
Collective Action | Social Standing | Self-Efficacy | Future Expectations | Controls Earnings | Mental Health | Social Support | Social Norms | Intra-Household Dynamics | Financial Support | Social Cohesion | IPV Perceptions | Control in HH | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collective Action | NA | 0.04 | 0.18*** | 0.09** | 0.08** | 0 | 0.12*** | 0.04 | 0.09** | 0.18*** | 0.16*** | 0.08** | 0.09** |
Social Standing | 0.04 | NA | 0.24*** | 0.52*** | 0.09** | 0.36*** | 0.08** | 0.1*** | -0.03 | 0.02 | 0.04 | 0 | 0.09** |
Self-Efficacy | 0.18*** | 0.24*** | NA | 0.26*** | 0.17*** | 0.23*** | 0.1** | 0.12*** | 0.08** | 0.21*** | 0.25*** | 0.04 | 0.23*** |
Future Expectations | 0.09** | 0.52*** | 0.26*** | NA | 0.05 | 0.3*** | 0.1*** | 0.01 | 0 | 0.01 | 0 | 0.07* | 0.08* |
Controls Earnings | 0.08** | 0.09** | 0.17*** | 0.05 | NA | 0.05 | 0.03 | 0.19*** | 0.1*** | 0.11*** | 0.02 | -0.13*** | 0.55*** |
Mental Health | 0 | 0.36*** | 0.23*** | 0.3*** | 0.05 | NA | -0.03 | 0.11*** | 0.06* | 0.09** | 0.13*** | -0.07* | 0.06† |
Social Support | 0.12*** | 0.08** | 0.1** | 0.1*** | 0.03 | -0.03 | NA | 0.06* | -0.04 | 0.22*** | 0.08** | 0.18*** | 0.02 |
Social Norms | 0.04 | 0.1*** | 0.12*** | 0.01 | 0.19*** | 0.11*** | 0.06* | NA | -0.04 | 0.03 | 0.01 | -0.04 | 0.26*** |
Intra-Household Dynamics | 0.09** | -0.03 | 0.08** | 0 | 0.1*** | 0.06* | -0.04 | -0.04 | NA | 0.07* | 0.22*** | -0.14*** | 0.08** |
Financial Support | 0.18*** | 0.02 | 0.21*** | 0.01 | 0.11*** | 0.09** | 0.22*** | 0.03 | 0.07* | NA | 0.32*** | 0.04 | 0.05 |
Social Cohesion | 0.16*** | 0.04 | 0.25*** | 0 | 0.02 | 0.13*** | 0.08** | 0.01 | 0.22*** | 0.32*** | NA | -0.08** | 0.04 |
IPV Perceptions | 0.08** | 0 | 0.04 | 0.07* | -0.13*** | -0.07* | 0.18*** | -0.04 | -0.14*** | 0.04 | -0.08** | NA | -0.05 |
Control in HH | 0.09** | 0.09** | 0.23*** | 0.08* | 0.55*** | 0.06† | 0.02 | 0.26*** | 0.08** | 0.05 | 0.04 | -0.05 | NA |
Work Days/Mo (Bus.) | Bus. Investments | No. HH Bus. | Financial Support | Intra-Household Dynamics | Social Norms | Social Support | Mental Health | Controls Earnings | Future Expectations | Self-Efficacy | Social Standing | Collective Action | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Work Days/Mo (Bus.) | NA | 0.31*** | 0.44*** | 0.04 | 0.02 | 0.13*** | 0.09** | 0.05† | 0.17*** | 0.06* | 0.1** | 0.11*** | 0.09** |
Bus. Investments | 0.31*** | NA | 0.28*** | -0.02 | -0.05 | 0.11*** | 0.09** | 0 | 0.17*** | 0.07* | 0.05† | 0.08** | 0.02 |
No. HH Bus. | 0.44*** | 0.28*** | NA | 0.04 | -0.07* | 0.17*** | 0.08** | 0.07* | 0.12*** | 0.03 | 0.09** | 0.13*** | 0.07* |
Financial Support | 0.04 | -0.02 | 0.04 | NA | 0.07* | 0.03 | 0.22*** | 0.09** | 0.11*** | 0.01 | 0.21*** | 0.02 | 0.18*** |
Intra-Household Dynamics | 0.02 | -0.05 | -0.07* | 0.07* | NA | -0.04 | -0.04 | 0.06* | 0.1*** | 0 | 0.08** | -0.03 | 0.09** |
Social Norms | 0.13*** | 0.11*** | 0.17*** | 0.03 | -0.04 | NA | 0.06* | 0.11*** | 0.19*** | 0.01 | 0.12*** | 0.1*** | 0.04 |
Social Support | 0.09** | 0.09** | 0.08** | 0.22*** | -0.04 | 0.06* | NA | -0.03 | 0.03 | 0.1*** | 0.1** | 0.08** | 0.12*** |
Mental Health | 0.05† | 0 | 0.07* | 0.09** | 0.06* | 0.11*** | -0.03 | NA | 0.05 | 0.3*** | 0.23*** | 0.36*** | 0 |
Controls Earnings | 0.17*** | 0.17*** | 0.12*** | 0.11*** | 0.1*** | 0.19*** | 0.03 | 0.05 | NA | 0.05 | 0.17*** | 0.09** | 0.08** |
Future Expectations | 0.06* | 0.07* | 0.03 | 0.01 | 0 | 0.01 | 0.1*** | 0.3*** | 0.05 | NA | 0.26*** | 0.52*** | 0.09** |
Self-Efficacy | 0.1** | 0.05† | 0.09** | 0.21*** | 0.08** | 0.12*** | 0.1** | 0.23*** | 0.17*** | 0.26*** | NA | 0.24*** | 0.18*** |
Social Standing | 0.11*** | 0.08** | 0.13*** | 0.02 | -0.03 | 0.1*** | 0.08** | 0.36*** | 0.09** | 0.52*** | 0.24*** | NA | 0.04 |
Collective Action | 0.09** | 0.02 | 0.07* | 0.18*** | 0.09** | 0.04 | 0.12*** | 0 | 0.08** | 0.09** | 0.18*** | 0.04 | NA |
Note that columns 3-4 are taken from Bossuroy et al. (2022) tables SI.14-SI.26, with slight modifications to the financial support and control over earnings indices.
Control (N=1296) | T.ind (N=666) | T.rel (N=666) | Total (N=2628) | p value | |
---|---|---|---|---|---|
PMT poverty score | 0.487 | ||||
|
12.26 (0.31) | 12.25 (0.33) | 12.25 (0.31) | 12.26 (0.31) | |
|
11.19 - 12.93 | 11.15 - 12.93 | 11.02 - 12.93 | 11.02 - 12.93 | |
Age | 0.964 | ||||
|
34.33 (14.10) | 34.39 (13.78) | 34.51 (14.01) | 34.39 (13.99) | |
|
18.00 - 100.00 | 18.00 - 90.00 | 18.00 - 100.00 | 18.00 - 100.00 | |
Is head of household | 0.660 | ||||
|
0.12 (0.32) | 0.13 (0.34) | 0.12 (0.33) | 0.12 (0.33) | |
|
0.00 - 1.00 | 0.00 - 1.00 | 0.00 - 1.00 | 0.00 - 1.00 | |
Is nomad | 0.733 | ||||
|
0.10 (0.30) | 0.11 (0.32) | 0.11 (0.31) | 0.11 (0.31) | |
|
0.00 - 1.00 | 0.00 - 1.00 | 0.00 - 1.00 | 0.00 - 1.00 | |
ASP treatment arm | 0.955 | ||||
|
782 (60.3%) | 398 (59.8%) | 398 (59.8%) | 1578 (60.0%) | |
|
514 (39.7%) | 268 (40.2%) | 268 (40.2%) | 1050 (40.0%) | |
ASP timing | 0.549 | ||||
|
729 (56.2%) | 361 (54.2%) | 360 (54.1%) | 1450 (55.2%) | |
|
567 (43.8%) | 305 (45.8%) | 306 (45.9%) | 1178 (44.8%) | |
Participant in ASP trial | < 0.001 | ||||
|
0.13 (0.34) | 0.22 (0.42) | 0.23 (0.42) | 0.18 (0.38) | |
|
0.00 - 1.00 | 0.00 - 1.00 | 0.00 - 1.00 | 0.00 - 1.00 |
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.67873 0.26881 -13.6854 < 2.2e-16 ***
## conditionT.ind 0.15528 0.20384 0.7618 0.44619
## conditionT.rel -0.52480 0.25339 -2.0711 0.03835 *
## typepaquet_c -0.33052 0.17875 -1.8491 0.06445 .
## timing_c 0.13751 0.18109 0.7594 0.44763
## isbaseline_c -2.04234 0.51123 -3.9950 6.471e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Outcome | df | beta | SE | pval |
---|---|---|---|---|
PMT | 2623 | 0.55 | 0.35 | 0.121 |
Age | 2623 | 0.01 | 0.01 | 0.025* |
Is head of household | 2623 | 0.5 | 0.23 | 0.030* |
Is nomad | 2623 | 0.05 | 0.29 | 0.865 |
Outcome | df |
Control (SD) |
T.ind Coef (SE) Robust p-value Cluster robust p-value |
T.rel Coef (SE) Robust p-value Cluster robust p-value |
---|---|---|---|---|
Food Security Index | 2473 |
0 ( 1 ) |
0.07 ( 0.05 ) 0.152 0.262 |
0.11 ( 0.05 ) 0.029* 0.059† |
Business Omnibus Index | 2474 |
0 ( 1 ) |
0.04 ( 0.05 ) 0.388 0.469 |
0.09 ( 0.05 ) 0.069† 0.107 |
Economic Composite Index | 2474 |
0 ( 1 ) |
0.07 ( 0.05 ) 0.168 0.263 |
0.12 ( 0.05 ) 0.012 0.021 |
Outcome | df |
Control (SD) |
T.ind Coef (SE) Robust p-value Cluster robust p-value |
T.rel Coef (SE) Robust p-value Cluster robust p-value |
---|---|---|---|---|
Food Security Index | 2473 |
0 ( 1 ) |
0.07 ( 0.05 ) 0.152 0.262 |
0.11 ( 0.05 ) 0.029* 0.059† |
Food security (hh) | 2473 |
6.83 ( 1.52 ) |
0.15 ( 0.07 ) 0.034* 0.074† |
0.16 ( 0.07 ) 0.032* 0.054† |
Dietary diversity | 2473 |
9.12 ( 8.75 ) |
0.07 ( 0.42 ) 0.870 0.898 |
0.59 ( 0.43 ) 0.169 0.214 |
Outcome | df |
Control (SD) |
T.ind Coef (SE) Robust p-value Cluster robust p-value |
T.rel Coef (SE) Robust p-value Cluster robust p-value |
---|---|---|---|---|
Business Omnibus Index | 2474 |
0 ( 1 ) |
0.04 ( 0.05 ) 0.388 0.469 |
0.09 ( 0.05 ) 0.069† 0.107 |
Business Engagement Index | 2474 |
0 ( 1 ) |
0.05 ( 0.05 ) 0.294 0.346 |
0.09 ( 0.05 ) 0.053† 0.093† |
Has a business | 2474 |
0.82 ( 0.38 ) |
-0.01 ( 0.02 ) 0.778 0.779 |
0.03 ( 0.02 ) 0.079† 0.118 |
No. businesses | 2474 |
1.24 ( 1.21 ) |
0.01 ( 0.06 ) 0.848 0.856 |
0.05 ( 0.06 ) 0.370 0.410 |
No. businesses past year | 2474 |
0.48 ( 1.04 ) |
0.04 ( 0.05 ) 0.395 0.393 |
0.05 ( 0.05 ) 0.295 0.331 |
Business investments (yearly, USD) | 2474 |
106.12 ( 181.94 ) |
19.78 ( 9.17 ) 0.031* 0.059† |
14.22 ( 8.85 ) 0.108 0.163 |
Business asset value (USD) | 2474 |
15.02 ( 22.19 ) |
0.62 ( 1.13 ) 0.585 0.629 |
0.9 ( 1.09 ) 0.409 0.474 |
No. days worked | 2474 |
17.47 ( 20.15 ) |
0.78 ( 0.94 ) 0.407 0.497 |
0.82 ( 0.9 ) 0.366 0.402 |
Growth intentions | 2474 |
1.06 ( 0.83 ) |
0.01 ( 0.04 ) 0.750 0.761 |
0.07 ( 0.04 ) 0.087† 0.119 |
Practices | 2457 |
0 ( 1 ) |
0.05 ( 0.05 ) 0.274 0.311 |
0.06 ( 0.04 ) 0.184 0.254 |
Business Performance Index | 2474 |
0 ( 1 ) |
0 ( 0.05 ) 0.943 0.955 |
0.05 ( 0.05 ) 0.354 0.377 |
Business profits (monthly, USD) | 2474 |
35.61 ( 50.24 ) |
-0.49 ( 2.44 ) 0.841 0.876 |
2.91 ( 2.53 ) 0.249 0.297 |
Business revenues (monthly, USD) | 2474 |
118.45 ( 162.2 ) |
2.68 ( 7.88 ) 0.734 0.783 |
5.01 ( 7.86 ) 0.524 0.518 |
Outcome | df |
Control (SD) |
T.ind Coef (SE) Robust p-value Cluster robust p-value |
T.rel Coef (SE) Robust p-value Cluster robust p-value |
---|---|---|---|---|
Food Security Index | 2471 |
0 ( 1 ) |
0.07 ( 0.05 ) 0.150 0.260 |
0.11 ( 0.05 ) 0.029* 0.059† |
Business Omnibus Index | 2472 |
0 ( 1 ) |
0.04 ( 0.05 ) 0.391 0.470 |
0.09 ( 0.05 ) 0.070† 0.107 |
Economic Composite Index | 2472 |
0 ( 1 ) |
0.07 ( 0.05 ) 0.167 0.262 |
0.12 ( 0.05 ) 0.012 0.021 |
Psychosocial Composite Index | 2485 |
0 ( 1 ) |
0.1 ( 0.05 ) 0.039* 0.058† |
0.12 ( 0.05 ) 0.014 0.029 |
Psychological Composite Index | 2485 |
0 ( 1 ) |
0.14 ( 0.05 ) 0.003** 0.010* |
0.12 ( 0.04 ) 0.009** 0.023* |
Social Composite Index | 2485 |
0 ( 1 ) |
0.05 ( 0.05 ) 0.333 0.337 |
0.09 ( 0.05 ) 0.072† 0.118 |
Outcome | df |
Control (SD) |
T.50 Coef (SE) Cluster robust p-value |
T.75 Coef (SE) Cluster robust p-value |
---|---|---|---|---|
Psychosocial Composite Index | 2487 |
-0.02 ( 1.02 ) |
0.08 0.09 0.382 |
0.15 0.09 0.087 |
Psychological Composite Index | 2487 |
-0.03 ( 1.07 ) |
0.13 0.09 0.145 |
0.14 0.08 0.075 |
Well-Being | 2487 |
-0.03 ( 1.04 ) |
0.07 0.08 0.39 |
0.14 0.08 0.086 |
Self-Efficacy | 2473 |
-0.02 ( 1 ) |
0.05 0.09 0.57 |
0.04 0.08 0.636 |
Future Expectations | 2473 |
-0.03 ( 1.04 ) |
0.15 0.08 0.079 |
0.13 0.08 0.079 |
Social Composite Index | 2487 |
0 ( 0.99 ) |
0.03 0.09 0.749 |
0.11 0.08 0.176 |
Partner Dynamics | 2226 |
0.06 ( 1.01 ) |
-0.03 0.06 0.674 |
0.01 0.07 0.906 |
Household Dynamics | 2487 |
-0.01 ( 0.99 ) |
0.04 0.08 0.648 |
0.14 0.08 0.087 |
Decision-Making | 2473 |
-0.02 ( 1.03 ) |
-0.03 0.08 0.693 |
0.05 0.07 0.43 |
Social Standing | 2473 |
-0.02 ( 1.04 ) |
0.06 0.09 0.522 |
0.1 0.09 0.27 |
Social Support | 2487 |
0 ( 0.98 ) |
0.07 0.07 0.323 |
0.08 0.07 0.202 |
Social Cohesion | 2473 |
-0.01 ( 0.98 ) |
-0.01 0.08 0.87 |
-0.02 0.08 0.84 |
Outcome | df |
Control (SD) |
T.50 Coef (SE) Cluster robust p-value |
T.75 Coef (SE) Cluster robust p-value |
---|---|---|---|---|
Economic Composite Index | 2474 |
-0.03 ( 0.95 ) |
0.1 0.12 0.387 |
0.1 0.12 0.406 |
Food Security Index | 2473 |
-0.03 ( 0.97 ) |
0.12 0.11 0.274 |
0.09 0.11 0.427 |
Food security (hh) | 2473 |
6.86 ( 1.52 ) |
0.11 0.14 0.446 |
0.06 0.13 0.63 |
Dietary diversity | 2473 |
8.48 ( 8.13 ) |
1.13 0.94 0.232 |
0.9 1 0.37 |
Business Omnibus Index | 2474 |
-0.02 ( 0.96 ) |
0.04 0.1 0.657 |
0.07 0.1 0.479 |
Business Engagement Index | 2474 |
-0.02 ( 0.95 ) |
0.05 0.09 0.606 |
0.08 0.1 0.423 |
Has a business | 2474 |
0.83 ( 0.38 ) |
0.01 0.03 0.798 |
0 0.03 0.866 |
No. businesses | 2474 |
1.19 ( 0.96 ) |
0.05 0.09 0.578 |
0.12 0.1 0.248 |
No. businesses past year | 2474 |
0.44 ( 0.79 ) |
0.06 0.05 0.225 |
0.13 0.06 0.039 |
Business investments (yearly, USD) | 2474 |
100.53 ( 178.05 ) |
21.65 20.15 0.283 |
18.51 19.66 0.347 |
Business asset value (USD) | 2474 |
15.9 ( 23.15 ) |
-0.88 1.75 0.618 |
-0.59 1.69 0.727 |
No. days worked | 2474 |
16.05 ( 18.36 ) |
1.24 1.89 0.511 |
2.21 1.76 0.209 |
Growth intentions | 2474 |
1.05 ( 0.81 ) |
0.01 0.07 0.886 |
0.03 0.07 0.653 |
Practices | 2457 |
0.02 ( 1.01 ) |
-0.01 0.08 0.92 |
-0.01 0.07 0.887 |
Business Performance Index | 2474 |
-0.01 ( 0.95 ) |
0.02 0.1 0.856 |
0.04 0.1 0.721 |
Business profits (monthly, USD) | 2474 |
34.77 ( 47.69 ) |
1.36 4.8 0.777 |
2.04 4.88 0.676 |
Business revenues (monthly, USD) | 2474 |
117.32 ( 156.89 ) |
1.31 16.16 0.935 |
4.5 15.67 0.774 |
Note: A paths are treatment effects taken from Table 2 and Table S4.
library(mediation)
set.seed(123)
## For T.ind V Control
d.med.ti <- de %>%
filter(condition!="T.rel") %>%
dplyr::select(condition, ben_econ_omni_std, typepaquet_c, timing_c, isbaseline_c, psychosocial_omni_std, psych_omni_std, social_omni_std, ment_hlth_std, gse_std, mobility_std, hh_dyn_std) %>%
drop_na()
d.med.ti$condition <- droplevels(d.med.ti$condition)
d.med.ti$condition <- if_else(d.med.ti$condition=="T.ind", 1,0)
## Psychosocial omni
m <- lm(psychosocial_omni_std ~ condition + typepaquet_c + timing_c + isbaseline_c, d.med.ti)
y <- lm(ben_econ_omni_std ~ condition + psychosocial_omni_std + typepaquet_c + timing_c + isbaseline_c, d.med.ti)
m.out1 <- mediate(m, y, treat = "condition", mediator = "psychosocial_omni_std")
# summary(m.out1)
indirect1.b <- round(summary(m.out1)$d1, digits=2)
indirect1.ci1 <- round(summary(m.out1)$d1.ci[1], digits=2)
indirect1.ci2 <- round(summary(m.out1)$d1.ci[2], digits=2)
indirect1.p <- summary(m.out1)$d1.p
## Psych omni
m <- lm(psych_omni_std ~ condition + typepaquet_c + timing_c + isbaseline_c, d.med.ti)
y <- lm(ben_econ_omni_std ~ condition + psych_omni_std + typepaquet_c + timing_c + isbaseline_c, d.med.ti)
m.out2 <- mediate(m, y, treat = "condition", mediator = "psych_omni_std")
# summary(m.out2)
indirect2.b <- round(summary(m.out2)$d1, digits=2)
indirect2.ci1 <- round(summary(m.out2)$d1.ci[1], digits=2)
indirect2.ci2 <- round(summary(m.out2)$d1.ci[2], digits=2)
indirect2.p <- summary(m.out2)$d1.p
## Social omni
m <- lm(social_omni_std ~ condition + typepaquet_c + timing_c + isbaseline_c, d.med.ti)
y <- lm(ben_econ_omni_std ~ condition + social_omni_std + typepaquet_c + timing_c + isbaseline_c, d.med.ti)
m.out3 <- mediate(m, y, treat = "condition", mediator = "social_omni_std")
# summary(m.out3)
indirect3.b <- round(summary(m.out3)$d1, digits=2)
indirect3.ci1 <- round(summary(m.out3)$d1.ci[1], digits=2)
indirect3.ci2 <- round(summary(m.out3)$d1.ci[2], digits=2)
indirect3.p <- summary(m.out3)$d1.p
## Anticipated mobility
m <- lm(mobility_std ~ condition + typepaquet_c + timing_c + isbaseline_c, d.med.ti)
y <- lm(ben_econ_omni_std ~ condition + mobility_std + typepaquet_c + timing_c + isbaseline_c, d.med.ti)
m.out4 <- mediate(m, y, treat = "condition", mediator = "mobility_std")
# summary(m.out4)
indirect4.b <- round(summary(m.out4)$d1, digits=2)
indirect4.ci1 <- round(summary(m.out4)$d1.ci[1], digits=2)
indirect4.ci2 <- round(summary(m.out4)$d1.ci[2], digits=2)
indirect4.p <- summary(m.out4)$d1.p
## Well-being
m <- lm(ment_hlth_std ~ condition + typepaquet_c + timing_c + isbaseline_c, d.med.ti)
y <- lm(ben_econ_omni_std ~ condition + ment_hlth_std + typepaquet_c + timing_c + isbaseline_c, d.med.ti)
m.out5 <- mediate(m, y, treat = "condition", mediator = "ment_hlth_std")
# summary(m.out5)
indirect5.b <- round(summary(m.out5)$d1, digits=2)
indirect5.ci1 <- round(summary(m.out5)$d1.ci[1], digits=2)
indirect5.ci2 <- round(summary(m.out5)$d1.ci[2], digits=2)
indirect5.p <- summary(m.out5)$d1.p
## Self-efficacy
m <- lm(gse_std ~ condition + typepaquet_c + timing_c + isbaseline_c, d.med.ti)
y <- lm(ben_econ_omni_std ~ condition + gse_std + typepaquet_c + timing_c + isbaseline_c, d.med.ti)
m.out6 <- mediate(m, y, treat = "condition", mediator = "gse_std")
# summary(m.out6)
indirect6.b <- round(summary(m.out6)$d1, digits=2)
indirect6.ci1 <- round(summary(m.out6)$d1.ci[1], digits=2)
indirect6.ci2 <- round(summary(m.out6)$d1.ci[2], digits=2)
indirect6.p <- summary(m.out6)$d1.p
## Household dynamics
m <- lm(hh_dyn_std ~ condition + typepaquet_c + timing_c + isbaseline_c, d.med.ti)
y <- lm(ben_econ_omni_std ~ condition + hh_dyn_std + typepaquet_c + timing_c + isbaseline_c, d.med.ti)
m.out7 <- mediate(m, y, treat = "condition", mediator = "hh_dyn_std")
# summary(m.out7)
indirect7.b <- round(summary(m.out7)$d1, digits=2)
indirect7.ci1 <- round(summary(m.out7)$d1.ci[1], digits=2)
indirect7.ci2 <- round(summary(m.out7)$d1.ci[2], digits=2)
indirect7.p <- summary(m.out7)$d1.p
x | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
library(mediation)
set.seed(123)
## For T.rel V Control
d.med.tr <- de %>%
filter(condition!="T.ind") %>%
dplyr::select(condition, ben_econ_omni_std, typepaquet_c, timing_c, isbaseline_c, psychosocial_omni_std, psych_omni_std, social_omni_std, ment_hlth_std, gse_std, mobility_std, hh_dyn_std) %>%
drop_na()
d.med.tr$condition <- droplevels(d.med.tr$condition)
d.med.tr$condition <- if_else(d.med.tr$condition=="T.rel", 1,0)
## Psychosocial omni
m <- lm(psychosocial_omni_std ~ condition + typepaquet_c + timing_c + isbaseline_c, d.med.tr)
y <- lm(ben_econ_omni_std ~ condition + psychosocial_omni_std + typepaquet_c + timing_c + isbaseline_c, d.med.tr)
m.out1 <- mediate(m, y, treat = "condition", mediator = "psychosocial_omni_std")
# summary(m.out1)
indirect1.b <- round(summary(m.out1)$d1, digits=2)
indirect1.ci1 <- round(summary(m.out1)$d1.ci[1], digits=2)
indirect1.ci2 <- round(summary(m.out1)$d1.ci[2], digits=2)
indirect1.p <- summary(m.out1)$d1.p
## Psych omni
m <- lm(psych_omni_std ~ condition + typepaquet_c + timing_c + isbaseline_c, d.med.tr)
y <- lm(ben_econ_omni_std ~ condition + psych_omni_std + typepaquet_c + timing_c + isbaseline_c, d.med.tr)
m.out2 <- mediate(m, y, treat = "condition", mediator = "psych_omni_std")
# summary(m.out2)
indirect2.b <- round(summary(m.out2)$d1, digits=2)
indirect2.ci1 <- round(summary(m.out2)$d1.ci[1], digits=2)
indirect2.ci2 <- round(summary(m.out2)$d1.ci[2], digits=2)
indirect2.p <- summary(m.out2)$d1.p
## Social omni
m <- lm(social_omni_std ~ condition + typepaquet_c + timing_c + isbaseline_c, d.med.tr)
y <- lm(ben_econ_omni_std ~ condition + social_omni_std + typepaquet_c + timing_c + isbaseline_c, d.med.tr)
m.out3 <- mediate(m, y, treat = "condition", mediator = "social_omni_std")
# summary(m.out3)
indirect3.b <- round(summary(m.out3)$d1, digits=2)
indirect3.ci1 <- round(summary(m.out3)$d1.ci[1], digits=2)
indirect3.ci2 <- round(summary(m.out3)$d1.ci[2], digits=2)
indirect3.p <- summary(m.out3)$d1.p
## Anticipated mobility
m <- lm(mobility_std ~ condition + typepaquet_c + timing_c + isbaseline_c, d.med.tr)
y <- lm(ben_econ_omni_std ~ condition + mobility_std + typepaquet_c + timing_c + isbaseline_c, d.med.tr)
m.out4 <- mediate(m, y, treat = "condition", mediator = "mobility_std")
# summary(m.out4)
indirect4.b <- round(summary(m.out4)$d1, digits=2)
indirect4.ci1 <- round(summary(m.out4)$d1.ci[1], digits=2)
indirect4.ci2 <- round(summary(m.out4)$d1.ci[2], digits=2)
indirect4.p <- summary(m.out4)$d1.p
## Well-being
m <- lm(ment_hlth_std ~ condition + typepaquet_c + timing_c + isbaseline_c, d.med.tr)
y <- lm(ben_econ_omni_std ~ condition + ment_hlth_std + typepaquet_c + timing_c + isbaseline_c, d.med.tr)
m.out5 <- mediate(m, y, treat = "condition", mediator = "ment_hlth_std")
# summary(m.out5)
indirect5.b <- round(summary(m.out5)$d1, digits=2)
indirect5.ci1 <- round(summary(m.out5)$d1.ci[1], digits=2)
indirect5.ci2 <- round(summary(m.out5)$d1.ci[2], digits=2)
indirect5.p <- summary(m.out5)$d1.p
## Self-efficacy
m <- lm(gse_std ~ condition + typepaquet_c + timing_c + isbaseline_c, d.med.tr)
y <- lm(ben_econ_omni_std ~ condition + gse_std + typepaquet_c + timing_c + isbaseline_c, d.med.tr)
m.out6 <- mediate(m, y, treat = "condition", mediator = "gse_std")
# summary(m.out6)
indirect6.b <- round(summary(m.out6)$d1, digits=2)
indirect6.ci1 <- round(summary(m.out6)$d1.ci[1], digits=2)
indirect6.ci2 <- round(summary(m.out6)$d1.ci[2], digits=2)
indirect6.p <- summary(m.out6)$d1.p
## Household dynamics
m <- lm(hh_dyn_std ~ condition + typepaquet_c + timing_c + isbaseline_c, d.med.tr)
y <- lm(ben_econ_omni_std ~ condition + hh_dyn_std + typepaquet_c + timing_c + isbaseline_c, d.med.tr)
m.out7 <- mediate(m, y, treat = "condition", mediator = "hh_dyn_std")
# summary(m.out7)
indirect7.b <- round(summary(m.out7)$d1, digits=2)
indirect7.ci1 <- round(summary(m.out7)$d1.ci[1], digits=2)
indirect7.ci2 <- round(summary(m.out7)$d1.ci[2], digits=2)
indirect7.p <- summary(m.out7)$d1.p
x | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|