Reproducible Research Repository
Reproducible Research Repository
  • Home
  • Repository
  • Collections
  • About
    Home / Repository / PRWP / RR_WLD_2024_106
PRWP

Reproducibility package for How Delayed Learning about Climate Uncertainty Impacts Decarbonization Investment Strategies

Get Reproducibility Package
Reference ID
RR_WLD_2024_106
DOI
https://doi.org/10.60572/0jyn-4x43
Author(s)
Adam Michael Bauer, Florent McIsaac, Stéphane Hallegatte
Collections
World Bank Policy Research Working Papers
Metadata
JSON
Created on
Apr 22, 2024
Last modified
May 09, 2025
  • Project Description
  • Downloads
Download related resources
Other Materials
README for the reproducibility package for Decarbonization Investment Strategies in an Uncertain Climate
Download [PDF, 137.75 KB]
Download https://reproducibility.worldbank.org/index.php/catalog/129/download/816
Reproducibility package for Decarbonization Investment Strategies in an Uncertain Climate (Journal Article)
Download [ZIP, 62.6 MB]
Download https://reproducibility.worldbank.org/index.php/catalog/129/download/817
Zip preview
PP_WLD_2025_340
LICENSE.txt
README.pdf
Reproducibility package
codes
01_simplified_simulations.sh
02_mac_calibration.sh
03_effect_of_learning_low_linear.sh
04_temporal_redistribution_low_linear.sh
05_sectoral_response.sh
06_carbon_price_response.sh
data
cal
ar6bs_17_glob.csv
ar6bs_17_secs.csv
ar6bs_2_glob.csv
ar6bs_2_secs.csv
ar6emis_17_glob.csv
ar6emis_17_secs.csv
ar6emis_2_glob.csv
ar6emis_2_secs.csv
ar6hi_17_glob.csv
ar6hi_17_secs.csv
ar6hi_2_glob.csv
ar6hi_2_secs.csv
ar6pow_17_glob.csv
ar6pow_17_secs.csv
ar6pow_2_glob.csv
ar6pow_2_secs.csv
ar6_15_glob.csv
ar6_15_secs.csv
ar6_17_glob.csv
ar6_17_secs.csv
ar6_17_short_glob.csv
ar6_17_short_secs.csv
ar6_2_glob.csv
ar6_2_secs.csv
ghq_roots.csv
rec_15N1_T30_B8.csv
rec_N1_T30_B3.csv
rec_N1_T30_B8.csv
rec_N1_T40_B10.csv
rec_N1_T40_B500.csv
rec_N1_T40_B6.csv
simp_glob.csv
simp_secs.csv
output
ar6bs_17_GHQ_TRUNC_invrec_output.nc
ar6bs_17_N1_T30_B8_method3_invBS_rp_data.nc
ar6bs_2_N1_T30_B8_method3_invBS_rp_data.nc
ar6emis_17_inv_output.nc
ar6emis_17_mac_output.nc
ar6emis_17_N1_T30_B8_method3_inv_rp_data.nc
ar6emis_17_N1_T30_B8_method3_mac_rp_data.nc
ar6emis_2_inv_output.nc
ar6emis_2_mac_output.nc
ar6emis_2_N1_T30_B8_method3_inv_rp_data.nc
ar6emis_2_N1_T30_B8_method3_mac_rp_data.nc
ar6hi_17_inv_output.nc
ar6hi_17_mac_output.nc
ar6hi_17_N1_T30_B8_method3_inv_rp_data.nc
ar6hi_17_N1_T30_B8_method3_mac_rp_data.nc
ar6hi_2_inv_output.nc
ar6hi_2_mac_output.nc
ar6hi_2_N1_T30_B8_method3_inv_rp_data.nc
ar6hi_2_N1_T30_B8_method3_mac_rp_data.nc
ar6pow_17_inv_output.nc
ar6pow_17_N1_T30_B8_method3_inv_rp_data.nc
ar6pow_2_inv_output.nc
ar6pow_2_N1_T30_B8_method3_inv_rp_data.nc
ar6_15_15N1_T30_B8_method3_inv_rp_data.nc
ar6_15_15N1_T30_B8_method3_mac_rp_data.nc
ar6_15_inv_output.nc
ar6_15_mac_output.nc
ar6_17_inv_output.nc
ar6_17_mac_output.nc
ar6_17_N1_T30_B8_GHQ_TRUNC_invrec_output.nc
ar6_17_N1_T30_B8_method3_inv_rp_data.nc
ar6_17_N1_T30_B8_method3_mac_rp_data.nc
ar6_17_short_N1_T40_B500_method2_inv_rp_data_short.nc
ar6_2_inv_output.nc
ar6_2_mac_output.nc
ar6_2_N1_T30_B8_method3_inv_rp_data.nc
ar6_2_N1_T30_B8_method3_mac_rp_data.nc
simp_inv_output.nc
simp_mac_output.nc
simp_N1_T30_B3_GHQ_TRUNC_invrec_output.nc
simp_N1_T30_B3_GHQ_TRUNC_macrec_output.nc
figs
2025-4-28-mac-cal.png
2025-4-29-ar6-pfig-value-of-learning-quadbox.png
2025-4-29-ar6-sec-inv-eff-lt-t17.png
2025-4-29-ar6-temp-redist.png
2025-4-29-ar6bs-pfig-value-of-learning-duobox-withbs.png
2025-4-29-ar6emis-pfig-value-of-learning-quadbox.png
2025-4-29-ar6emis-temp-redist.png
2025-4-29-carbon-price-dists-data-t17.png
2025-4-29-simp.png
2025-4-29-t17-inv-base-rec-comparision-cost-secs-withbs.png
2025-4-30-ar6-pfig-value-of-learning-quadbox-t15.png
2025-4-30-ar6-temp-redist-t15.png
2025-4-30-ar6hi-pfig-value-of-learning-quadbox.png
2025-4-30-ar6hi-temp-redist.png
2025-4-30-ar6pow-temp-redist.png
2025-4-30-carbon-price-sensitivities.png
2025-5-1-ar6hi-temp-redist.png
2025-5-7-ar6pow-pfig-value-of-learning-quadbox.png
figure_mains
carbon_price_impact.py
carbon_price_sensitivity.py
comp_dac_no_dac.py
effect_of_learning.py
effect_of_learning_dac.py
mac_cal.py
sectoral_response.py
simp.py
src
presets.py
temporal_redist.py
si01_dac_effect_of_learning.sh
si02_dac_vs_no_dac_comp.sh
si03_effect_of_learning_emis.sh
si04_temporal_redistribution_emis.sh
si05_effect_of_learning_high_linear.sh
si06_temporal_redistribution_high_linear.sh
si07_effect_of_learning_pow.sh
si08_temporal_redistribution_pow.sh
si09_effect_of_learning_t15.sh
si10_temporal_redistribution_t15.sh
si11_carbon_price_sensitivity.sh
simulation_mains
invBaseEmis_cvxpy_main.py
invBase_cvxpy_main.py
invRecBS_cvxpy_main.py
invRecBS_RiskPrem_cvxpy_main.py
invRecEmis_cvxpy_main.py
invRecEmis_RiskPrem_cvxpy_main.py
invRecExpBS_cvxpy_main.py
invRecExpEmis_cvxpy_main.py
invRecExp_cvxpy_main.py
invRec_cvxpy_main.py
invRec_RiskPremShort_cvxpy_main.py
invRec_RiskPrem_cvxpy_main.py
macAdj_cvxpy_main.py
macBaseEmis_cvxpy_main.py
macBase_cvxpy_main.py
macRecEmis_cvxpy_main.py
macRecEmis_RiskPrem_cvxpy_main.py
macRecExpEmis_cvxpy_main.py
macRecExp_cvxpy_main.py
macRec_cvxpy_main.py
macRec_RiskPrem_cvxpy_main.py
src
invBaseEmis_model.py
invBase_model.py
invRecBS_model.py
invRecEmis_model.py
invRecExpBS_model.py
invRecExpEmis_model.py
invRecExp_model.py
invRec_model.py
macBaseEmis_model.py
macBase_model.py
macRecEmis_model.py
macRecExpEmis_model.py
macRecExp_model.py
macRec_model.py
tree.py
TAXONOMY_CVXPY.md
delayed_learning_reprod_env.yml
reproducibility_report_PP_WLD_2025_340.pdf
Reproducibility package for How Delayed Learning about Climate Uncertainty Impacts Decarbonization Investment Strategies (Working Paper)
Download [ZIP, 5.14 MB]
Download https://reproducibility.worldbank.org/index.php/catalog/129/download/818
Zip preview
RR_WLD_2024_106
LICENSE
README.pdf
Reproducibility package
.gitignore
01_mac_calibration.sh
02_effect_of_learning_low_linear.sh
03_temporal_redistribution_low_linear.sh
04_sectoral_response.sh
05_carbon_price_response.sh
data
.gitignore
cal
ar6_15_glob.csv
ar6_15_secs.csv
ar6_17_glob.csv
ar6_17_secs.csv
ar6_2_glob.csv
ar6_2_secs.csv
ar6bs_15_glob.csv
ar6bs_15_secs.csv
ar6bs_17_glob.csv
ar6bs_17_secs.csv
ar6bs_2_glob.csv
ar6bs_2_secs.csv
ar6emis_15_glob.csv
ar6emis_15_secs.csv
ar6emis_17_glob.csv
ar6emis_17_secs.csv
ar6emis_2_glob.csv
ar6emis_2_secs.csv
ar6hi_15_glob.csv
ar6hi_15_secs.csv
ar6hi_17_glob.csv
ar6hi_17_secs.csv
ar6hi_2_glob.csv
ar6hi_2_secs.csv
ar6pow_15_glob.csv
ar6pow_15_secs.csv
ar6pow_17_glob.csv
ar6pow_17_secs.csv
ar6pow_2_glob.csv
ar6pow_2_secs.csv
ghq_roots.csv
rec_15N1_T30_B8.csv
rec_N1_T30_B8.csv
rec_N1_T40_B10.csv
rec_N1_T40_B500.csv
rec_N1_T40_B6.csv
output
ar6pow_17_inv_output.nc
ar6pow_17_mac_output.nc
ar6pow_2_inv_output.nc
ar6pow_2_mac_output.nc
ar6pow_2_N1_T30_B8_method3_inv_rp_data.nc
ar6pow_2_N1_T30_B8_method3_mac_rp_data.nc
delayed_learning_reprod_env.yml
figs
2024-5-21-ar6-pfig-value-of-learning-quadbox-t15.png
2024-5-27-ar6-pfig-value-of-learning-quadbox.png
2024-5-27-ar6-sec-inv-eff-lt-t17.png
2024-5-27-ar6-total-cost-ind-cutoff-2030.png
2024-5-28-t17-inv-base-rec-comparision-cost-secs-withbs.png
figure_mains
carbon_price_impact.py
comp_dac_no_dac.py
effect_of_learning.py
effect_of_learning_dac.py
mac_cal.py
sectoral_response.py
src
.gitignore
__pycache__
presets.cpython-311.pyc
presets.py
temporal_redist.py
si01_dac_effect_of_learning.sh
si02_dac_vs_no_dac_comp.sh
si03_effect_of_learning_emis.sh
si04_temporal_redistribution_emis.sh
si05_effect_of_learning_high_linear.sh
si06_temporal_redistribution_high_linear.sh
si07_effect_of_learning_pow.sh
si08_temporal_redistribution_pow.sh
si09_effect_of_learning_t15.sh
si10_temporal_redistribution_t15.sh
simulation_mains
.invRec_RiskPrem_cvxpy_main.py.swp
invBase_cvxpy_main.py
invBaseEmis_cvxpy_main.py
invRec_cvxpy_main.py
invRec_RiskPrem_cvxpy_main.py
invRec_RiskPremShort_cvxpy_main.py
invRecBS_cvxpy_main.py
invRecBS_RiskPrem_cvxpy_main.py
invRecEmis_cvxpy_main.py
invRecEmis_RiskPrem_cvxpy_main.py
invRecExp_cvxpy_main.py
invRecExpBS_cvxpy_main.py
invRecExpEmis_cvxpy_main.py
macAdj_cvxpy_main.py
macBase_cvxpy_main.py
macBaseEmis_cvxpy_main.py
macRec_cvxpy_main.py
macRec_RiskPrem_cvxpy_main.py
macRecEmis_cvxpy_main.py
macRecEmis_RiskPrem_cvxpy_main.py
macRecExp_cvxpy_main.py
macRecExpEmis_cvxpy_main.py
src
.gitignore
__pycache__
invBase_model.cpython-311.pyc
invBase_model.cpython-39.pyc
invBaseEmis_model.cpython-311.pyc
invRec_model.cpython-311.pyc
invRec_model.cpython-39.pyc
invRecBS_model.cpython-311.pyc
invRecEmis_model.cpython-311.pyc
invRecExp_model.cpython-311.pyc
invRecExpBS_model.cpython-311.pyc
invRecExpEmis_model.cpython-311.pyc
macBase_model.cpython-311.pyc
macBase_model.cpython-39.pyc
macBaseEmis_model.cpython-311.pyc
macRec_model.cpython-311.pyc
macRec_model.cpython-39.pyc
macRecEmis_model.cpython-311.pyc
macRecExp_model.cpython-311.pyc
macRecExpEmis_model.cpython-311.pyc
tree.cpython-311.pyc
invBase_model.py
invBaseEmis_model.py
invRec_model.py
invRecBS_model.py
invRecEmis_model.py
invRecExp_model.py
invRecExpBS_model.py
invRecExpEmis_model.py
macBase_model.py
macBaseEmis_model.py
macRec_model.py
macRecEmis_model.py
macRecExp_model.py
macRecExpEmis_model.py
tree.py
TAXONOMY_CVXPY.md
reproducibility_report_RR_WLD_2024_106-v05.pdf
Reproducibility verification for Decarbonization Investment Strategies in an Uncertain Climate
Download [PDF, 400.65 KB]
Download https://reproducibility.worldbank.org/index.php/catalog/129/download/819
Back to Catalog
The World Bank Working for a World Free of Poverty
  • IBRD IDA IFC MIGA ICSID

© The World Bank Group, All Rights Reserved.